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Drip tectonics and the enigmatic uplift of the
Central Anatolian Plateau
Oğuz H. Göğüş 1, Russell N. Pysklywec2, A.M.C. Şengör1 & Erkan Gün 1,2

Lithospheric drips have been interpreted for various regions around the globe to account for

the recycling of the continental lithosphere and rapid plateau uplift. However, the validity of

such hypothesis is not well documented in the context of geological, geophysical and

petrological observations that are tested against geodynamical models. Here we propose that

the folding of the Central Anatolian (Kırşehir) arc led to thickening of the lithosphere and

onset of “dripping” of the arc root. Our geodynamic model explains the seismic data showing

missing lithosphere and a remnant structure characteristic of a dripping arc root, as well as

enigmatic >1 km uplift over the entire plateau, Cappadocia and Galatia volcanism at the

southern and northern plateau margins since ~10Ma, respectively. Models show that arc root

removal yields initial surface subsidence that inverts >1 km of uplift as the vertical loading

and crustal deformation change during drip evolution.
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The tectonic evolution of the Mediterranean involves a
complex array of subduction, collision, and back-arc
spreading events in relation to ongoing northward

convergence of Africa towards Eurasia1,2. Tectonic complexity
arises from the microplate kinematics in the region inferred
by geodetic studies3 including oroclinal bending of various
orogens4,5, and a series of postulated lithospheric removal
events6–9, interpreted from data showing thin, hot, and active
lithosphere10,11.

In this work, we consider a case in Central Anatolia where
folding of a Tethyan arc may have caused lithospheric instability
through localized thickening of the arc root. The development of
this instability as a style of “drip tectonics”, in turn, may account
for the uplift (>1 km) over the entire plateau and volcanism at the
plateau margins since ~10Ma in which their cause remains
enigmatic.

The Central Anatolian Plateau is a distinct geological region
bounded by the Eastern Anatolian shortening Province to the east
and the Western Anatolian Extensional Province to the west
(Fig. 1a). The average topographic elevation of the low-relief
plateau interior (Kırşehir block) is ~1 km, while the southern
(Taurides) and northern margins (Pontides) of the plateau are
defined by ~1.5 km mean elevation. River incision and paleoal-
timetry studies in the Cappadocia Volcanic (south-central pla-
teau) rocks suggest ~1 km of surface uplift since 8Ma12. In the
northern margin, geomorphological studies suggest >1 km of
river incision in response to the surface uplift since the early
Pliocene ~(5Ma)13 related to the transpressional tectonics of the
North Anatolian fault. Quantitative paleoelevation estimates
suggest that the southern margin of Central Anatolian Plateau
was below sea level during the Miocene and has experienced
>2 km surface uplift since the last 8 Ma14,15. Furthermore, these
~8My old sedimentary deposits in the Mut and Ermenek basins
(southern margin/Taurides) (Fig. 1a) are rather undeformed and
in sub-horizontal positions. Based on these and other seismolo-
gical observations, the slab detachment mechanism under Cyprus
has been proposed to account for the localized >2 km uplift along
the southern margin of the plateau16. According to the cosmo-
genic dating of river terraces, there is surface uplift—at least since

2Ma—across entire Central Anatolia, although the rate and
magnitude in the north and south is 5 and 10 times higher than in
the central section of the plateau, respectively17. The cause of
uplift over the entire plateau—including plateau interior—
remains uncertain.

Seismic tomography shows near-surface low-velocity P and S
wave anomalies beneath Central Anatolia that suggest litho-
spheric thinning and concurrent asthenospheric mantle uprising
under the crust10,18–20. Receiver function studies interpret that
the lithosphere is only ~60 km thick under Central Anatolia21.
The seismic tomography model18 indicates an attenuated piece of
“V” shaped fast velocity body under the plateau interior and slow
seismic anomalies at shallow depths at the northern (Pontides)
and southern (Taurides) margins (N–S cross section along 33° E).
Corroborating the seismological interpretations, geochemical
studies from Central Anatolia volcanics emphasize the
contribution of asthenospheric mantle derived magmatism. For
instance, Central Anatolia extension was accompanied by the
eruption of the Erciyes and Hasandağ volcanoes at the Cappa-
docia Volcanic Province. The Quaternary volcanics in this region
are suggested to be derived from asthenospheric melts22,23.
According to geochemical investigations from the Late Miocene
Galatian Volcanic Province (in the northern margin), later stage
Alkaline volcanics (~10Ma to recent) are produced by decom-
pression melting of the asthenospheric mantle in relation to
regional extension24–26 (Fig. 1a).

Arc-related granitoids produced 80Ma in the east of the Tuz
Gölü basin27 and surrounding HP-LT rocks, metamorphosed
88Ma28, suggest that the Central Anatolian (Kırşehir) block
developed as a magmatic arc above an approximately eastward
dipping subduction (Fig. 1a, b). Based on stratigraphic evidence29,
the 90° rotation of the Haymana basin axis occured due to the
collision of the Kırşehir block with the Central Pontides in the
late Paleocene-early Eocene. This collision instigated the antic-
lockwise rotation of Central Anatolia in which the arc doubled
back on itself by folding around a vertical axis30. Paleomagnetic
work31 on the granitoids of Central Anatolia corroborated this
interpretation with their estimate of a 280 km wide NNE trending
plutonic belt folded into the present day position since the
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Fig. 1 Geological setting and lithospheric evolution of Central Anatolia. a Generalized map of Central Anatolia showing continental blocks and their major
tectonic boundaries. Simplified surface geological elements are shown to illustrate geologically inferred connection with the deep lithospheric removal
process. CVP Cappadocia Volcanic Province, GVP Galatian Volcanic Province, TGB Tuz Gölü Basin, TGF Tuz Gölü Fault, NAF North Anatolian Fault, E
Erciyes volcano, H Hasandağ volcano, Green area shows basins. b Schematic illustration of restored tectonic configuration and geologic features during the
late Cretaceous29 showing intact lithosphere. c Schematic showing folding of the Central Anatolian (Kırşehir) arc about a vertical axis and ~25%
shortening31 culminating in the Middle Eocene–Miocene32,33. Such folding yields local thickening of the arc root and the onset of instability
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Cretaceous by ~25% shortening. The timing of the maximum
rotation/folding is the middle Eocene–Miocene based on paleo-
magnetic reconstructions32,33.

We hypothesize that such oroclinal folding and plate short-
ening caused the thickening of the deep arc root lithosphere (i.e.,
the colder and denser part) and led to gravitational viscous
instability under Central Anatolia (Fig. 1c). Reconciling model
predictions with the observed tectonics, we show that lithospheric
instability (dripping) model is consistent with entire surface uplift
of >1 km since ~10Ma as well as features having a symmetry in
Central Anatolia, for instance, lower seismic velocities in the
mantle, Galatia and Cappadocia volcanism (asthenosphere
derived) in the northern and southern margins of the plateau.

Results
Model set-up. Forward geodynamical models explore the
dynamics and the tectonic response to the removal of ~280 km
wide × 160 km thick (25% thickened), gravitationally unstable
lithosphere as an approximation to the foundering of Kırşehir arc
root (sub-arc mantle lithosphere) after thickening. The inset in
Fig. 2a and Supplementary Fig. 1. shows the initial model set-up
and the geometry of the dripping arc root lithosphere experi-
ments. Other model parameters, such as layer thicknesses, den-
sities and experimental parameters are described in the
Supplementary Material (Supplementary Fig. 1 and Table 1).
Except EXP-3, we did not impose any plate convergence from the
left or right margins of the lithospheric domain (i.e., used stable
boundary conditions). The description of the numerical code
(SOPALE) is given in the Methods section.

In these models, density, ρ, is a function of composition and
temperature, ρ= ρo (1–α (T−To)), where T is temperature, α=
2 × 10–5 K−1 is the coefficient of thermal expansion, To= 25 °C is
the reference temperature, and ρo is the reference density that
depends on material. Experiments showed that an increase in the
thermal expansion coefficient (e.g., α= 3 × 10−5 K−1) has rela-
tively minor effect on these lithospheric scale model calculations.

For rheological calculations we use laboratory measurements
based on a viscous flow law of _ε ¼ Aσnexp �Q

RT

� �
. Here, _ε is the

strain rate, T is temperature, σ is deviatoric stress, and the
variables A, n, Q, and R are the viscosity parameter, power law
exponent, activation energy, and ideal gas constant, respectively.
The EXP-1 (preferred model) uses the temperature-independent
mantle lithosphere rheology with viscous flow law parameters
Q= 0 and A= 10−38 Pa−n s−1. Based on strain rates of 10−12 to
10−17 s−1 that are characteristic of flow in the models, this
corresponds to the mantle lithosphere viscosity μ at the sub-arc
region and elsewhere in the model ranging from 2.69 × 1019 to
5 × 1023 Pa s. For the practical purpose in these calculations we set
the minimum and maximum viscosity variation ranging from
5 × 1019 to 5 × 1022 Pa s.

The initial size of the instability, based on an approximation for
the width of the Kırşehir magmatic arc and other factors such as
lithosphere rheology and density difference may control the
propensity and nature of the instability (Supplementary Figs. 2
and 3). We show the most representative numerical models for
the drip tectonics/arc root removal model in Central Anatolia
from a large set of models as part of the parametric numerical
study.

Tectonic evolution of the dripping lithosphere. EXP-1 shows
instability developing by 3.8 My and associated surface sub-
sidence of ~600 m as the crust is pulled down (negative dynamic
topography) by the dripping lithosphere (Fig. 2a). The crust
thickens by 5 km above the drip and this corresponds to a con-
fined zone of shortening. At 4.7 My, the surface subsidence has
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inverted to uplift (to 1 km) since the vertical load induced by the
descending mantle lithosphere has diminished with necking of
the dripping arc root (Fig. 2b). The twin-highs are raised by the
upward return mantle flow at the sides of the central lithospheric
downwelling. Comparing the surface topography evolution of the
model with the Central Anatolian plateau, the twin-high uplift
pattern on the edges of the instability may be consistent with the
distinctively elevated topography in the northern and southern
margins of the plateau with respect to its interior16,17. By 9.5 My
the surface topography is characterized by a wide region of uplift
with maximum elevation of 1.5 km (Fig. 2c). The descending sub-

arc lithosphere has been removed and it has been replaced by hot
sub-lithospheric/asthenospheric mantle. The crust has now
thinned appreciably (~6 km) as a result of upwelling mantle
causing extension (note that despite the crustal thinning, topo-
graphic transients are positive with an uplift). The cause of the
broad uplift is a combination between the dynamic and isostatic
support.

EXP-2 tests a similar model, but with temperature-dependent
mantle lithosphere rheology (e.g., small-scale drips) based on dry
olivine creep34 (see Methods section and Supplementary Table 1).
Figure 3a shows that the localized instability grows quickly and by
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1.2 My a small drip began to sink into the mantle. This dripping
lithosphere yields a surface subsidence of ~500 m and crustal
thickening of 2.5 km above the descending lithosphere. The
surface topography evolution of this experiment is similar to
EXP-1 with inversion from negative to positive topography, but
the magnitude is diminished, since the amount of material
participating in the downwelling process is less. At 9.5 My, a
number of small-scale viscous “driplets” start to develop at the
bottom of the lithosphere (Fig. 3b). The surface uplift is ~400 m
and the modest crustal thickening persists. This is different from
(EXP-1) where the plateau-like positive surface topography
develops with large-scale removal of the arc root lithosphere. In
addition, this style of removal does not lead to late-stage crustal
thinning, but rather maintains thickening.

For EXP-3, a convergence velocity of 2 cm/year is imposed to
consider lithospheric removal contemporaneous with shortening,
such as in Cordilleran type orogenic systems35. All other model

parameters are the same with the EXP-1. The convergence
promotes faster development of the arc root instability (Fig. 3c).
Shortening—driven by both the drip and the imposed conver-
gence—yields crustal thickening of ~10 km. This causes surface
uplift of ~1 km, although a trough at the center of this uplift
develops as the active drip pulls down the middle of this zone.
By 8.0 My, the arc root has been removed and despite the
plate convergence, the mantle dynamics are sufficiently strong
to permit crustal thinning above a large area of the drip zone
(e.g., mainly on the margins) (Fig. 3d). There is still uplift above
the localized thinned crust owing to the sub-crustal dynamics
(~x= 800 km) (as in EXP-1). These surface deformations with
convergence-enhanced convective removal are akin to the syn-
convergent extension that can be induced by delamination type
lithospheric removal36.

EXP-4 shows how post-orogenic (15 km thicker crust) modifies
the evolution of the dripping lithosphere37 (Fig. 3e). In all other
aspects, the experiment is identical to EXP-1. The model shows
that an increase in the initial crustal thickness (more buoyant) has
a retarding effect on the development of the lithospheric
instability and the removal process. Specifically, the sinking of
the gravitationally unstable arc root begins after the thinning of
the 55 km thick and buoyant orogenic crust which may develop
in conjunction with the post-orogenic gravitational collapse. The
experiment shows that there is ~1 km surface elevation at 6.3 My
and at 11.1 My, the drip has detached after removal of a large
portion of the lithosphere (Fig. 3f). This results in a further uplift
of surface topography, reaching 2 km. The crust, however, has
thinned >10 km on the margins of the lithospheric drip. Overall,
the dynamics of the lithospheric drip and its transient surface
displacements develop similarly with the EXP-1 where the surface
elevation increases contemporaneous to the crustal extension
above the zone of the instability.

Discussion
Our arc root removal models of lithospheric replacement with
hot sub-lithospheric mantle (e.g., EXP-1, 3, 4) are consistent with
proposed seismic tomography models that show slow seismic
velocities beneath Central Anatolia10,18–21. In particular, the
symmetric features in the tomographic N–S cross section18 (along
33° E) (i.e., slow anomalies around the “V” shaped fast velocity
body) reconcile with the predicted lithospheric structure in EXP-
1 at 9.5 My (Fig. 4a). Similarly, the presence of slow seismic
velocity anomalies at shallow lithospheric levels around the high
velocity anomalies (Kırşehir arc) is also represented in the high
resolution seismic cross section cutting through Western-Central
and the Central-East Anatolia (D–D′)18. Geodynamic predictions
also suggest that mantle upwelling—compatible with the presence
of slow seismic velocity anomalies in the south and north of
Kırşehir (central) block—are well correlated with the Erciyes22

and Hasandağ23 basalts of the Cappadocia volcanics and the
Galatia volcanics24–26, (both originated from asthenospheric
mantle source), respectively.

Figure 4b plots a time series of the modeled surface elevation
at x= 850 (~150 km south of the center of instability) in
all experiments compared against the inferences of estimated
uplift in the southern margin of the plateau (Taurides) from
ref. 15. In EXP-1, an inversion from subsidence to uplift occurs
8 Ma with final uplift of ~1 km, ~6Ma (Fig. 4b). In EXP-2 with
small-scale removal model, the amount of uplift is less
than 500 m over 9.5 My In EXP-3 where plate convergence is
imposed, the uplift is amplified compared to EXP-1 (~2 km).
EXP-4, with initially thicker crust, shows surface subsidence
until 2 Ma and then the elevation increases by ~500 m.
Geomorphological interpretations15 suggest that uplift in
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Taurides beginning 8Ma and progressing in stages, reaching a
total elevation increase of 2 km. EXP-1 is in good agreement
with this estimate in terms of the timing and the amount of uplift
between 8–2Ma. The additional ~1 km of uplift would be related
to the tectonic component of slab break-off/tear in the subducting
plate under the Cyprus arc16. However, the break-off is con-
strained under the plate convergence zone (south of Taurides) as
shown in the tomographic images19 therefore such process can-
not account for the approximately >1 km broad uplift of the
entire Central Anatolian plateau (~650 km) since ~8Ma. Geo-
dynamic models show that the slab break-off has more confined
response in elevating the surface topography (e.g., especially in
the zone of slab detachment)36 rather than the plate hinterland.
The initial phase of subsidence predicted by our drip tectonics
models (Fig. 4b) is consistent with elevation estimates derived
from back-stripping data from the Tuz Gölü basin38. These
estimates indicate topographic inversion 3Ma and total vertical
displacement of ~1 km. Though the pattern of inversion from
subsidence to uplift can match with the models, the inconsistency
in timing may be owing to various factors, such as model
assumed rheology and uncertainty in the initial conditions con-
trolling the start of the lithospheric instability, as well as the three
dimensional nature of the process that is not captured in model
calculations.

Figure 4c shows the modeled crustal thickness variation in the
zone of lithospheric removal (~650 km) compared with the
seismological (receiver function) estimates39. EXP-1 shows the
best fit compared to the other models where the crust is ~36 km
thick, especially on both sides of the central plateau. The crust is
~6 km thicker in the center of EXP-1 compared to the seismo-
logical interpretations, which may be due to the active arc root
dripping considered in the models whereas such process may
have ended in the Central Anatolia.

The style of crustal deformation concurrent with the inversion
to uplift is debated for Central Anatolia. Our preferred drip
model (EXP-1) shows a transition from crustal shortening to
extension as the lithosphere is removed. The thin viscous
sheet calculations predicted in the dynamic model40 suggests
extension in Central Anatolia, and this is in agreement with the
preferred (EXP-1) model predictions. According to geological
interpretations41 crustal extension has been ongoing since the late
Cretaceous accompanied by syn-extensional granitic plutonism
and formation of the Tuz Gölü basin. Structural-kinematic ana-
lyses along the Tuz Gölü fault led to interpretations that this fault
was reactivated as a normal fault ~6Ma when the regional
tectonic regime changed from shortening to N–S to NE–SW
extension due to lithospheric scale processes42. Normal faulting
since the late Pleistocene in southeastern part of Central Anatolia
(e.g., Ecemiş fault) has also been inferred by the cosmogenic
exposure dating of terrestrial sediments and structural studies43.
On the other hand, large-scale east-northeast vergent thrusting
appears to have continued into the Quaternary as shown
in the seismic reflection profile at the Tuz Gölü fault thus
disproving the allegations of a switch from shortening to exten-
sion (See Figure 5a in ref. 38). It may be that the extensional
structures in Central Anatolia are controlled by the strike-slip
kinematics in the region44, as suggested by earthquake focal
mechanisms45.

Lithospheric foundering processes46,47 (e.g., peel away/dela-
mination9,36,48 or viscous drip6,49) and the participating amount
(i.e., mantle lithosphere and/or lower crust) to the removal is
dependent on tectonic setting50 (i.e., magmatic arcs51,52, rift
systems53, plate convergence zones54, intra-plate tectonics55,
cratons56). For example, presumed slab peel away process (e.g.,
similar to wholesale delamination mechanism) from beneath the
Eastern Anatolia is associated with surface uplift (~2 km) and

widespread melt production under the entire Eastern Anatolia
(from Caucasus to the Bitlis suture zone)36,57. On the other hand,
more localized and coeval volcanism associated with astheno-
spheric mantle source (since ~10Ma) in the north (Galatia) and
south (Cappadocia) in Central Anatolia may be more consistent
with the viscous drip type removal following to the folded con-
tinental arc (hence thickened at depth). These different foun-
dering styles—between the Central and Eastern Anatolia—have
also been suggested through analysis of geochemical character-
istics of volcanics58 and the different potential mantle tempera-
tures23. Therefore, a single continental delamination model59 that
accounts for the uplift and tectonic evolution of both Central and
East Anatolia may be questionable, although the mantle driven
dynamic topography most likely contributed to the ~1 km uplift
of both plateaus60. Slab roll-back in conjunction with the small-
scale drips under Central Anatolia is plausible mechanism to
produce shallow melting inferred by petrological interpretations
for the Hasandağ basalts23, however, slab retreat does not explain
the >1 km of surface uplift at the back-arcs since 10Ma. The plate
hinterlands/back-arcs in these settings are associated with
extension/subsidence—e.g., in the Aegean and other Mediterra-
nean basins2,7,8, rather than surface uplift, well constrained in
Central Anatolia.

It is possible that the initiation of the lithospheric drip ~10Ma
may be triggered or facilitated by the reduced effective viscosity
of the sub-arc mantle lithosphere due to the asthenospheric
mantle entrainment under the Anatolian plate from the east.
Hot mantle intrusion could occur through asthenospheric
mantle upwelling by a slab peel away from the accretionary crust
in the Eastern Anatolia36,57,61. A slab window opening due to
the slab break-off16 under Cyprus may effectively favor
the initiation of the lithospheric instability and following
dripping process by hot mantle passage from the south. However,
it would presumably occur later (~2Ma), following the collision
between the Eratosthenes Seamount and Cyprus arc62, therefore,
its influence may relatively be in secondary importance. Future
work on identifying more precise timing of the transition
from calc-alkaline to alkaline volcanism, structural controls on
the basin formations (normal, strike slip, and thrust tectonics),
geochemical characteristics of the sub-arc mantle lithosphere
(e.g., investigations on the eclogite bearing xenoliths) and
their relation to the deep high resolution geophysical images
(seismic tomography, receiver functions, MT) will all help us to
better understand the style and character of the lithospheric
removal.

Methods
Numerical technique. The numerical code employed here, SOPALE, uses arbitrary
Lagrangian–Eulerian (ALE) finite element techniques to solve for the plane-strain
deformation of complex visco-plastic materials63. The ALE technique is useful for
treating finite deformations, and for tracking boundaries (surface and Moho
topography) and internal particles (P-T paths)8,9,36,50. The configuration of the
model is designed as a general representation for the gravitationally unstable arc
root removal from beneath the crust into the mantle.

Model design and material properties. A broad suite of drip tectonics models
that explore a large range of modeling space (e.g., density, activation energy,
viscosity, initial size and the width of the drip) are conducted in this work. By
showing a representative suite of experiments in the context of orogenic evolution
of Central Anatolia (and possibly to other areas where dripping lithosphere has
been proposed), we have focused on cases tailored to the region and highlighting
the influence of the important parameters. The choice of major model parameter
approximations for Central Anatolia are given below (please see Supplementary
File 1 for other model parameters).

The wet quartzite rheology used in these models is an approximation for the
general lithological properties of the Central Anatolian basins (e.g., Tuz Gölü
basin) that are made up of thick layers of Oligo-Miocene conglomerate and
Pliocene sandstones29. When weak lower crust is inserted in the models (e.g., felsic
granulite rheology) the dense layer starts to peel away/delaminate depending on the
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lateral extent of the weak layer9. Based on the same flow law used for the mantle
(see Model set-up section), the viscous deformation of the continental crust is
controlled by the material parameter (A= 1.1 × 1028 Pa−4 s−1), power law exponent
(n= 4), and the activation energy (Q= 223 kJ mol−1) based on wet quartzite64

(Supplementary Table 1). In addition to the viscous response, the crust is able to
deform by frictional plastic yielding in which the Drucker–Prager yeld criterion is
used, equivalent to the Coulomb criterion in plane strain, σy= p sin ϕ + Cc (crust).
For the crust, an empirical weakening is imposed with the internal angle of friction
varying from ϕ= 15−2° dependent on the strain. Here, ϕ= 15° is an effective
internal angle of friction that implicitly includes the effects of pore fluid pressure Pf
in the crust. The weakening/softening process of the crust represents the increasing
fluid pressure through partial melt and fluid infiltration into the Kırşehir arc by
subduction processes. This is a regular approach in these types/scales of models
(e.g., ref. 50) Furthermore, the crustal weakening employed in these models
implicitly takes into account the shear zone related deformations (e.g., cataclastic
flow, fault gouges)65. In these experiments, the isostatic thickening of the crust is
also effective in increasing the elevation of the surface topography, even without
asthenospheric mantle upwelling. Further, such elevation change is amplified
compared to a perfect Airy isostasy most likely because of the strain weakening
implemented in the crust. For instance, when comparing the results of EXP-3
against EXP-1 at later stages the crustal thickening of 7 km corresponds to change
in elevation from 1 to 2 km in the center of the drip where asthenospheric mantle
upwelling does not occur. For a perfect Airy type isostasy, 1 km of surface
topography is associated with ~5.6 km of crustal thickening (assuming ρcont
= 2800 kg m−3 and ρm= 3300 kg m−3).

A locally pre-existing perturbation (280 km wide and 160 km thick) represents a
shortened and thickened Kırşehir arc root at the center of the model that instigates
the removal process. Inferences made by geodynamic models suggest that such
plate shortening may not only effect the crust and but also the underlying mantle
part of the lithosphere (sub-arc lithosphere) which may lead to lithospheric
instabilities6,49,50. The initial width of the arc (~280 km) is based on the
distribution of arc-related granitoids in Central Anatolia, and the 160 km thickness
is chosen for 25% thickening, inferred by paleomagnetic restorations31. The
geometry of the instability is chosen based on available observational constraints
for the arc root under Central Anatolia. The duration of the models is kept in the
0–10My interval because this was when the plateau uplift started to occur and
possibly switched from shortening to extension at ~6Ma.

In these experiments, the reference density of the sub-arc mantle lithosphere
(arc root) is initially set to be higher than the underlying asthenospheric mantle.
Petrological studies infer the opposite buoyancy conditions especially for older
lithospheric plates (e.g., cratons)47 due to chemical depletion. However, owing to
several geologic factors a higher density of the arc root is suitable for the ~80 my
old Central Anatolia (Kırşehir) continental magmatic arc. First, sub-arc mantle
lithosphere (arc roots) in thickened/shortened mature arcs, (e.g., Late the
Cretaceous arc in Sierra Nevada) may become denser because of refertilization/
enrichment due to the entrapment of the melts induced by subduction fluids66. The
sub-batholitic arc root for various regions is considered to be of high relative
density47,51,67, as with the Kırşehir arc root. In support of this interpretation, it has
been suggested that the Central Anatolian basalts (Cappadocia area) carry
components of enriched/refertilized mantle, interacted with slab derived fluids23.
A second geologic factor for the dense unstable arc root in Central Anatolia is
potential eclogitization of the lower crust. Shortening of lower crust (as in the
region) can transform gabbroic rocks into eclogitic facies conditions68.
Subsequently, eclogites in the lower crust can sink into the underlying arc root and
promote the instability with other mafic residues69. Though the mechanism is
plausible for Central Anatolia, the evidence for the presence of eclogite bearing
xenoliths has not been yet been substantiated.

The effects of varying viscosities of the dripping arc root are tested and an
alternative model with 10 times higher viscosity (ranging from μ= 5.1020‒5.1022

Pa s for the same strain rates as the preferred experiment EXP-1) is shown in
Supplementary Fig. 2. The EXP-1 is associated with lower arc root viscosity which
controls the initiation of drip which started at ~10Ma. This timing is and the
evolution of surface tectonics is consistent with the geological evolution of
Anatolia.

The numerical (width) and (depth) resolution is 201 × 101 Eulerian nodes and
601 × 301 Lagrangian nodes. Half of the Eulerian and Lagrangian elements are
concentrated in the top 160 km in order to enhance resolution in the lithosphere.
The model has a free top surface, allowing topography to develop as the model
evolves. The mechanical boundary conditions at the other three sides are defined
by zero tangential stress and normal velocity (e.g., “free slip”). We have extended
the depth of the solution space into the lower mantle so that the sinking mantle
lithosphere material moves away from the lithosphere. The initial geotherm for the
experiments is laterally uniform and is defined by a surface temperature of 25 °C,
an increase to 550 °C at the Moho, an increase to 1350 °C at the base of the mantle
lithosphere, and an increase to 1525 °C at the bottom of the model. We tested the
influence of Moho temperature (350–750 °C) in a series of models and the general
model predictions discussed here (e.g., surface elevation, crustal thickness) are only
minorly affected by this.

The surface and bottom temperatures are held constant throughout the
experiments and the heat flux across the side boundaries is zero. The initial
temperature profile is the same in all experiments. Thermal properties (thermal

conductivity k= 2.25Wm−1 K−1, heat capacity cp= 1250 J kg−1 K−1) are the same
for all materials and we ignore radioactive heat production and shear heating in the
model. In this work we do not take into account explicitly petrological processes of
decompression and/or hydrated mantle melting.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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